EARLY ACL POSTOPERATIVE EXERCISE AND STRESS

KAISER PERMANENTE ORTHOPAEDIC AND SPORTS REHABILITATION FELLOWHIP

OBJECTIVES

- Anatomy
- Biomechanics
- Post Surgical Healing
- In Vivo Vs. Biomechanical Equation Data
- Testing Post Op
- Exercise Safety and Stresses
- Implimentation

ANANTOMY

- Dense regular connective tissue bundles made of type I collagenpositive fibers
- These bundles are protected by dense irregular thin **type III** collagen-positive fibrils.
- With **nerves** and **mechanoreceptors** for pain and proprioception
- **Blood supply** from middle geniculate artery with braches into both lateral and medial inferior geniculate artery.
- III cadaveric knees
 - Width of 11-17mm and thickness of 3mm

BIOMECHANICS OF ACL

- Fibers:
 - Anteriomedial Bundle
 - Posterolateral Bundle
- Native ACL can resist 2000N force

Posterior View ACL Fiber Stress Orientation

LIGAMENTIZATION/ HISTOLOGY OF ACL POSTOPERATIVE

- 3 Characteristic Stages of Graft Healing:
- I. Early Healing Phase (I-4wks): Graft necrosis and hypocellularity and no detectable revascularization of the graft tissue (noted weakness of graft at this time)
- 2. Proliferation Phase (5-12wks): Remodeling and revascularization due to growth factors from necrotic tissue and myofibroblasts
- 3. Ligamentization Phase (12+wks): Restructuring of the graft towards the properties of the intact ACL max at 12 months

- Autograft of Bone Tendon- Bone/ Hamstring / Quadriceps tendon (8-12 weeks)
- Allograft up to 2x as long as Autograft: Screws or other fixations and donor tissue adherence to healing is very low and slow

IN VIVO STRESS MEASUREMENTS

- In vivo: ACL strain is directly measured
 - Strain Sensors: Implantable force probes placed in or around the mid-substance of the tissue, most commonly in the anteromedial bundle of the ACL (ACL Strain %)
- Invasive/ Costly
- Mostly Only sagittal plane tested and immediately Post Op or during Op

Figure 1. The DVRT was inserted arthroscopically into the anteromedial band of the ACL.

EXPERIMENTAL BIOMECHANICAL EQUATION MODEL FOR STRESS MEASUREMENTS

Fig. 2. Computer optimization with input from measured knee torque from inverse dynamics and predicted knee torque from muscle model, where $T_{\rm K}$ = resultant knee torque, $F_{\rm K}$ = resultant knee force, I = moment of inertia about leg center of mass, α = angular acceleration of leg, m = mass of leg, a = linear acceleration of leg, g is gravitation constant 9.80 m/s², $F_{\rm ext}$ = external force acting on foot, $T_{\rm ext}$ = external torque acting on foot, $F_{\rm Q}$ = quadriceps force, $F_{\rm P}$ = patellar tendon force, $F_{\rm H}$ = hamstrings force, and $F_{\rm G}$ = gastrocnemius force. *Note*: to simplify the drawing the equal and opposite forces and torques acting on the distal leg and proximal ankle are not shown.

- **Experimental Biomechanical Model** in many different ways but the main concern is that ACL loading is not measured directly, therefore, the models only provide an estimate.
- Electrodes acquire force of muscles for equation
- Resultant force and torque equilibrium equations calculated using inverse dynamics and the biomechanical knee model
- Then anteroposterior shear forces in the knee were calculated and adjusted to ligament orientations to estimate ACL forces (N)

Further in this Presentation:

IN VIVO= % strain

Experimental Biomechanical Model = ACL forces (N)

POSTOPERATIVE TESTING STRESS

- Lachman Test: Gives anywhere from 100-150 N 22.5lb –34lb on average to the Tibia 3.0-3.7% strain on ACL via implantable force probes
- Anterior Drawer Test: I 50 N on average 34lb of force to the tibia 3.5% strain on ACL via implantable force probes

OPEN CHAIN MMT TESTING

Author

Toutoungi

applied on the lower leg. The location of the restraining force is given relative to the distance from the knee joint. Given a constant external knee torque applied to the leg, moving the restraining force closer to the knee joint axis decreases ACL force. Abbreviation: ACL, anterior cruciate ligament. Adapted from Pandy and Shelburne.⁴³ Reproduced with permission.

Author	Exercise	Peak ACL Force (N)	Knee Flexion Ang
	Level-ground walking	355	16.8
Shelburne et al ⁵⁴	Level-ground walking	303	15 to 20

Non-Weight-Bearing Exercises				
	Exercise	Peak ACL Force (N)	Knee Flexion Angle (°)	
i et al57	Isokinetic seated knee extension (0°-90° of knee	349	35 to 40	
	flexion) at 60°/s			
	Isokinetic seated knee extension (0°-90° of knee	325	35 to 40	
	flexion) at 120°/s			
	Isokinetic seated knee extension (0°-90° of knee	254	35 to 40	
	flexion) at 180°/s			
	Isokinetic seated knee flexion (0°-90° of knee	0		
	flexion) at 60°/s			
	Isokinetic seated knee flexion (0°-90° of knee	0		
	flexion) at 120°/s			
	Isokinetic seated knee flexion (0°-90° of knee	0		
	flexion) at 180°/s			
	Isometric seated knee extension	396	35 to 40	
	Isometric seated knee flexion	0		

Peak ACL Force (N)	Knee Flexion Angle (°)	
355	16.8	
303	15 to 20	

EXERCISES TO IMPLEMENT

	Weight-Bearing Exe	rcises	
Author	Exercise	Anterior Shear Force (N)	Knee Flexion Angle (°)
Wilk et al ⁶²	Barbell squat (0°-90° of knee flexion) using	0	
	12 repetitions of maximum resistance*		
	Leg press (0°-90° of knee flexion) using 12	0	
	repetitions of maximum resistance*		
Nagura et al ⁴⁰	Full squat (0°-140° of knee flexion) using	66	10.9
	no external resistance		
	Rising from kneeling	111	40.9
	Level-ground walking	355 ←	16.0
	Stair climbing	146	50.8
Pflum et al44	Double-foot drop landing	220	33 to 48
Toutoungi et al ⁵⁷	Squat (0°-90° of knee flexion) with heel off the	95	<50
	ground without external resistance		
	Squat (0°-90° of knee flexion) with heel on the	28	<50
	ground without external resistance		
	Single-leg squat (0°-90° of knee flexion) without	142	<50
	external resistance		
Kulas et al ³⁵	Single-leg squat (0°-90° of knee flexion) without	124	15 to 25
	external resistance		
Shelburne et al ⁵⁴	Level-ground walking	303	15 to 20
Shelburne and	Dynamic squat-to-stand	20	25
Pandy ⁵⁰			
Pflum et al44	Double-foot drop landing stepping off a 60-cm	253	33 to 48
	platform		
Shin et al ⁵⁵	Single-leg landing from running to a stop	1294	25 to 30

- Squats (heel off/ heel on ground) (12 RM)
- Squat Full Depth (140)
- Leg press (12 RM)
- Double foot drop landing
- Single Leg Squat (Normal/ heel off / heel on ground)

EXERCISES TO IMPLEMENT

Weight-Bearing Exercises			
Author	Exercise	Peak ACL Force (N)	Knee Flexion Angle (°)
Escamilla et al ¹²	Barbell squat (0°-90° of knee flexion) using 12	0	
	repetitions of maximum resistance*		
	Leg press (0°-90° of knee flexion) using 12	0	
	repetitions of maximum resistance*		
Escamilla et al ¹³	Barbell squat (0°-90° of knee flexion) with narrow	0	
	stance using 12 repetitions of maximum		
	resistance*		
	Barbell squat (0°-90° of knee flexion) with wide	0	
	stance using 12 repetitions of maximum		
	resistance*		
	Leg press (0°-90° of knee flexion) with narrow	0	
	stance with high foot placement using 12		
	repetitions of maximum resistance*		
	Leg press (0°-90° of knee flexion) with wide stance	0	
	with high foot placement using 12 repetitions of		
	maximum resistance*		
	Leg press (0°-90° of knee flexion) with narrow	0	
	stance with low foot placement using 12		
	repetitions of maximum resistance*		
	Leg press (0°-90° of knee flexion) with wide stance	0	
	with low foot placement using 12 repetitions of		
	maximum resistance*		

- - -

...

010

- Squats (Narrow Stance, Wide Stance) (12RM)
- Leg Press (Narrow high feet, Narrow low feet, Wide high feet, Wide low feet) (12RM)

EXERCISES TO IMPLEMENT

Author	Exercise	Peak ACL Force (N)	Knee Flexion Angle (°)
Escamilla et al ¹⁴	Wall squat (0°-90° of knee flexion) with heels	0	
	positioned far from the wall using 12 repetitions		
	of maximum dumbbell resistance*		
	Wall squat (0°-90° of knee flexion) with heels	0	
	positioned close to the wall using 12 repetitions		
	of maximum dumbbell resistance*		
	Single-leg squat (0°-90° of knee flexion) using 12	59	30
	repetitions of maximum dumbbell resistance*		
Escamilla et al ¹⁵	Forward lunge (0°-90° of knee flexion) while taking	0	
	a long step forward using 12 repetitions of		
	maximum dumbbell resistance*		
	Forward lunge (0°-90° of knee flexion) while taking	0	
	a short step forward using 12 repetitions of		
	maximum dumbbell resistance*		
Escamilla et al ¹⁶	Forward lunge (0°-90° of knee flexion) while	0	
	taking a normal-length step forward using 12		
	repetitions of maximum dumbbell resistance*		
	Side lunge (0°-90° of knee flexion) while taking a	0	
	normal-length step sideways using 12 repetitions		
	of maximum dumbbell resistance*		
	Lunging forward and sideways (0°-90° of knee flex-	0	
	ion) while taking a normal-length step using 12		
	repetitions of maximum dumbbell resistance*		
	Lunging forward and sideways (0°-90° of knee flex-	0	
	ion) while keeping both feet stationary using 12		
	repetitions of maximum dumbbell resistance*		

- Experimental Biomechanical Model: A6 camera Peak Performance motion analysis system
- Wall Squat
- Single leg Squat weighted (12 RM)
- Lunge weighted (12RM) with Long/ Short step
- Lunge weighted (12 RM) sideways and forwards with stationary feet and moving feet

• In Vivo

- Bicycle (Cadence and Power output increases= no difference in ACL strain)
- Stair climbing (Slow/Normal Cadence)
- Step-up / Step-Down

TAKE AWAY

- Native ACL can withstand 2000N (440lb)
- Grafts are now said to be 80-100% as strong as Native if not stronger
- Weeks I-4 Graft Progressively weakens (2x as long for Allografts)
- Walking 300-350N (66-77lb)
- Lachman's 100-150N (22-33lb) / 3.0-3.7% strain
- Squats with anterior Tibofemoral glide Lead to 3x the force on ACL with knee >10cm in front of foot
- Squats with 30-40 degree trunk flexion turn on hamstrings to reduce ACL Strain
- Leg press, Full depth Squat, Double foot drop, Single leg squat, Lunge, Side Lunge, Bicycle, Stairs, Step Ups/ Down

IMPLEMENTATION

- Ease patient fears about stressing or tearing ACL Graft with Objective Evidence Early Post Op
- Guide ACL class practice in early Phases using recommendations
- Know healing phases and Precautions
- Back Exercise choices with MD

REFERENCES

- Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the hu- man knee. A biomechanical study. J Bone Joint Surg Am. 1980;62:259-270.
- Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. *Med Sci Sports Exerc.* 1998;30:556-569.
- Glass R, Waddell J, Hoogenboom B. The Effects of Open versus Closed Kinetic Chain Exercises on Patients with ACL Deficient or Reconstructed Knees: A Systematic Review. North American Journal of Sports Physical Therapy : NAJSPT. 2010;5(2):74-84.
- Hinckel B, Demange M, Gobbi R, J, Camanho G. The Effect of Mechanical Varus on Anterior Cruciate Ligament and Lateral Collateral Ligament Stress: Finite Element Analyses. ORTHOPEDICS. 2016; 39: e729-e736. doi: 10.3928/01477447-20160421-02
- Jackson DW, Windler GE, Simon TM. Intraarticu- lar reaction associated with the use of freeze- dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med. 1990;18:1-10; discussion 10-11.
- Janssen, Rob P.A., and Sven U. Scheffler. "Intra-Articular Remodelling of Hamstring Tendon Grafts after Anterior Cruciate Ligament Reconstruction." Knee Surgery, Sports Traumatology, Arthroscopy 22.9 (2014): 2102–2108. PMC. Web. 14 Aug. 2017.chniques." World Journal of Orthopedics 7.2 (2016): 82–93. PMC. Web. 14 Aug. 2017.
- Marumo K, Saito M, Yamagishi T, Fujii K. The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med. 2005;33:1166-1173. http://dx.doi. org/10.1177/0363546504271973
- Wilk KE, Macrina LC, Cain EL, et al. Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther. 2012;42:153-171.
- Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. *Am J Sports Med.* 1991;19:217-225.